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ABSTRACT

Having an accurate corn yield prediction is useful because it provides information about
production and equilibrium post-harvest futures price prior to harvest. A publicly available corn
yield prediction can help address emergent information asymmetry problems and, in doing so,
improve price efficiency on futures markets. This paper is the first to predict corn yield using Long
Short-Term Memory (LSTM), a special Recurrent Neural Network method. Our prediction is only
0.83 bushel/acre lower than actual corn yields in the Corn Belt, and is more accurate than the pre-
harvest prediction from the USDA. And more importantly, our model provides a publicly available
source that will contribute to eliminating the information asymmetry problem that arises from

private sector crop yield prediction.
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CHAPTER 1. INTRODUCTION

In the 2001 Nobel Prize winning paper “The Market for Lemons”, George Akerlof shows
that in a second-hand car market where asymmetric information exists, sellers know the quality of
their cars but buyers do not, thus buyers offer a price based on expected quality. As a result, sellers
of high quality cars worth more than the average price will exit the market, driving the proportion
of low value cars up and offer prices down. Eventually, only “lemons” are left in the market and
the market collapses. The key to this collapse is information asymmetry (i.e., sellers have more
information than buyers).

The solution to information asymmetry is to provide public information to all participants
in the market at the same time. Since 1964, the United States Department of Agriculture (USDA)
has predicted national corn yield and production using estimated yield surveys from farms and
enumerators making field visits in important corn production areas. These traditional statistical
method results are subjective since they rely on farmers’ estimations. USDA has also tried new
sources of data such as satellite imagery from MODIS (moderate resolution imaging
spectroradiometer). However, as of 2018, USDA continues to rely on the survey-based data, as
they are still in the very beginning stage of developing new prediction methods.

Several private companies, such as Lanworth, Tellus Labs, and Climate Corp, are probably
in a position to improve on the USDA survey. In contrast with the monthly state-level prediction
from USDA, these companies set up plant growth models based on weather information and expert
knowledge, monitor satellite imagery and weather patterns, and incorporate as many independent
lines of evidence as possible into their estimates to produce daily yield estimates. Corn futures
traders in the Chicago Mercantile Exchange who have preferential access to this information may

be in a position to make profitable trades to the detriment of traders who do not have access. Corn
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futures prices have a strong connection with expected corn yield. If a company or individual can
predict yield more precisely, they will have better information about futures prices and can
speculate in the futures market.

Figure 1.1 shows corn futures price, production, and yield from 1980 to 2016,
demonstrating a negative relationship between futures price and corn productions. This indicates

that accurate corn yield prediction data would be an important reference to the corn futures market.

Future price, corn production and yield
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Figure 1.1: Corn futures price, production, and yield, 1980-2016

Our motivation is to provide the public high-quality corn yield prediction that can substitute
for private information from companies, thus eliminating information asymmetry in the corn
futures market in the long run. We attempt to do so by improving the accuracy and quality of
USDA predictions. Two limitations of USDA predictions are that they only offer state-level, but
not county level predictions, and that USDA only publishes four monthly prediction reports

annually instead of a daily early prediction during the whole corn growing season. In this paper,
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we utilize modern data science techniques to provide monthly Corn Belt corn yield predictions at
the county level. This method can be used to provide a daily update on expected yield.

1.1 Background Knowledge

United States: Corn Production
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Figure 1.2: Percentage of U.S. corn yield grown in the Corn Belt
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Figure 1.2 shows that over 80% of U.S. corn is grown in the Corn Belt, and these regions
kept changing over time due to climate change. By comparing corn planting areas in 2010 and
2015, as shown in Figure 1.3, we can see trend of corn planting moving north, possibly due to
global warming.

The Corn Belt includes lowa, Illinois, Indiana, southern Michigan, western Ohio, eastern

Nebraska, eastern Kansas, southern Minnesota and parts of Missouri.

Nationwide corn yield
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Figure 1.4: Nationwide corn yield, 1980-2016

Corn is typically planted in April and harvested in October. The USDA reports the
nationwide county level corn yield in late February of the following year. The USDA provides a
monthly estimate of expected yield beginning in August.

Corn yield growth increased rapidly after 1950 with genetic improvement in seed and farm
management. By 1950, 99% of corn was grown from hybrids. Figure 1.4 shows an increasing trend

in corn yield from 1980 to 2016.
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Conventional crop forecasting is divided into two categories. A white-box approach is
based on theoretical structure with calibration while a black-box approach is only based on data.
The difference between white-box and black-box is the amount of prior information available. A
white-box model supposes all necessary information is known and a black-box model has no prior
information. In reality, some prior information can be figured out but there must be some unknown
left. Thus, modern yield prediction proposes approaches called grey-box, which take advantage of
both methods. Nonlinear regression and artificial neural network are examples of a grey-box
approach that are popular in modern yield prediction.

Agricultural economists often focus on examining factors affecting crop yield and how
they work. Statisticians and data scientists make efforts to improve the accuracy of crop forecasting.
Chawla et al. (2016) present a novel, knowledge-based statistical forecasting approach to predict
county-wide corn yield in the state of lowa. This gray-box model was based on Bayesian networks
(BN) to build a directed acyclic graph between predictors and yields. This model captured prior
casual knowledge from previous agricultural papers and took advantage of machine learning
techniques to improving prediction accuracy. This work first extends Chawla’s work across more
states and time and finds its inadequacies in prediction accuracy and proposes a more powerful
supervised method to improve results.

At the beginning of the new century, traditional machine learning methods began to be
considered for yield prediction. Past research using machine learning usually created models to
predict yield with discrete weather variables. As weather conditions are continuous through the
growing season, no research has explored the long-term dependencies between weather condition
from any specific time point and final yield. With deep learning, we can see whether and how each

point along the weather time series influences the final yield result. We use Long Short-Term
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Memory (LSTM), a special form of Recurrent Neural Network (RNN). Its efficiency in capturing
long-term dependencies and predicting time series with complex inner relations makes it a good
choice for our work. Though LSTM is one of the most popular methods in deep learning, it has
never been used in any other field except natural language processing. This work is the first to
apply LSTM in crop yield prediction, which indicates its potential in solving other prediction
problems, and contributes to improving the accuracy of publicly available corn yield prediction.

Our prediction is only 0.83 bushel/acre lower than actual corn yields in the Corn Belt, this
difference is lower than the prediction from the USDA. Eighty percent of our LSTM model county-
level corn yield predictions fall in the +/-20 bushel accuracy region. Results show that our LSTM
model can provide good early prediction and accurate Corn Belt county-level corn yield prediction
without farm management and corn seed data. Our model’s shortcoming is that predictions do not
perform well in extreme conditions because these are rare in the data.

The rest of this dissertation is organized as follows: Section 2 provides a literature review,
related to the expert knowledge needed to build the model. Section 3 explains how model variables
are selected, the process of data collection, and data cleaning. Methodologies used in the prediction
and explains the details of various model settings are provided in section 4. Section 5 shows results
and valuation of the prediction performance in lowa. Section 6 extends to other Corn Belt states

and early prediction. Section 7 concludes.
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CHAPTER 2. LITERATURE REVIEW

Expert knowledge is important in input variable selection and preprocessing when building
reasonable prediction models. Below (2008) explored factors affecting corn growth and found
weather —rain, temperature, wind, and humidity—as key factors.

Foote and Bean (1951) were the first to investigate evidence of trends and patterns in crop
yields associated with weather. Their study learned whether the available records on crop yields
per acre contain variations from year to year that might be useful in anticipating future changes in
per acre yields through conducting several statistical tests. Kaylen and Koroma (1991) suggest
limiting weather variables to temperature and precipitation to model U.S. corn yields. They present
a linear model using a stochastic trend and monthly rainfall and temperature variables from May
to August. Deschénes and Greenstone (2007) estimate the effect of variation in temperature and
precipitation on agricultural profit to measure the economic impact of climate change on US
agricultural land. They find that yield decreases in temperature and increases in rainfall. Almaraz
el at. (2008) study the relationship between climate variability (temperature and precipitation) and
corn vyield trends over a period of 33 years for south-western Quebec. They find that July
temperature and May precipitation explain more than half of yield variability associated with
climate.

All the aforementioned literature assumes linear relationships between corn yield and
weather variables; however, weather impacts on corn yield are complex and subtle. Schlenker and
Roberts (2009) conclude that temperature has a nonlinear effect on corn yield. They use nationwide
county-level data and present a steep non-linear decline in yields when temperature is above 29°C.
Yu et al. (2011) examine the drought effect on crop yield in lowa, Illinois, and Indiana and find

significant results. They also estimate non-linear weather impacts on corn yield using a Bayesian
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approach. Li et al. (2014) introduce a Bayesian dynamic linear model and estimated the impact of
weather factors — temperature, amount of rainfall and drought — on corn yield. They find that
weather events such as drought, flood and extreme heat cause considerable damage to corn yields
and the critical temperature varies across the state of lowa. Kefaya (2014) introduces a supervised
classification method for crop yield prediction by improving a regularization technique that was
used to obtain a computationally efficient classifier based on naive Bayes. The proposed method
is found to be much better than naive Bayes model and can be extended to explore more complex
predictor relations.

Basso et al. (2001) add spatial measurements — remote sensing in crop models. Remote
sensing provide spatial inputs for the model and results show that a combination of crop model
and remote sensing can identify management zones and causes for yield variability. Charles et al.
(2014) use a spatial Bayesian regression model to predict maize yields in the Corn Belt. Though
spatial smoothness among the regression coefficients will mitigate the effects of noisy data across
regions and improve yield forecasting, their results indicate that corn yield prediction still remains
a difficult problem. Gerlt et al. (2014) studied the relationship between farm-level yields and
county-level yields by exploiting the fact that county-level yields are the aggregate of farm level
yields to derive bounds that can be reduced to direct relationships between county- and farm-level
yields under certain conditions.

Technology may also be an important factor. Tannura et al. (2008) investigated the
relationship between weather, technology, and corn and soybean yields in the U.S. Corn Belt.
Their findings provided strong evidence that precipitation, temperature, and a linear time trend to
represent technological improvement explained all but a small portion of the variation in corn and

soybean yields in the U.S. Corn Belt. As a result, Trend yield forecasts based on perceptions of a
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rapid increase in technology may eventually lead to poor forecasts, as unfavorable weather in the
future may lead to unexpectedly low corn yields.

Recently, data science has developed quickly and new techniques, such as machine
learning, have been used to predict crop yields. Kaul, Hill, and Walthall (2005) use an artificial
neural network model with rainfall data to predict corn and soybean yield. The Maryland Water
Quality Improvement Act of 1998 requires mandatory nutrient management planning on all
agricultural land in Maryland. In order to effectively predict yields for typical climatic conditions,
they choose a machine learning method and find ANN models consistently produce more accurate
yield predictions than regression models. Newlands and Townley-Smith (2010) were the first to
apply a Bayesian Network (BN) to crop yield prediction and try to predict energy crop yield and
present results of predicted probability distribution. They find predicted probability distribution
could be mad, but no exact prediction result. Chawla et al. (2016) use BN to predict county-level
corn yield in lowa from 2005 to 2009 and find actual predicted yield, thus making it possible to
assess the accuracy of this method.

Kim et al. (2016) use four machine learning approaches for corn yield estimation in lowa—
SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees), and
DL (Deep Learning)—and use satellite images and climate data as explanatory variables. The
differences between their predictions and USDA statistics were about 6%-8%, thus they conclude
that machine learning can be a viable option for crop yield modeling. In particular, they find the
results of deep learning methods were more stable. However, the deep learning method they used
is quite different from our model, and they fail to offer county level or pre-harvest corn yield

prediction.
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RNN is a neural network originally used by biologist to mimic human brains. The basic
RNN architecture was developed in the 1980s; however, it has a fundamental problem —it cannot
learn to look far back into the past. Michael and Peter (2003) utilized the dynamic behavior of the
RNN to categorize input sequences into different specified classes, as the prediction task strongly
supports the development of a suitable internal structure, representing the main features of the
input sequence, to solve the classification problem. Therefore, the speed and success of the training
as well as the generalization ability of the trained RNN are significantly improved. The trained
RNN provides good classification performance and enables the user to assess efficiently the degree
of reliability of the classification result. Che et al. (2016) exploited the missing value patterns for
effective imputation and improving prediction performance by developing a novel deep learning
model. Their GRU-D model was based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent
neural network, and took two representations of missing patterns to incorporate them into a deep
model architecture so that it not only captured the long-term temporal dependencies in time series,
but also utilized the missing patterns to achieve better prediction results.

Hochreiter and Schmidhuber (1997) first rigorously analyze this problem in their paper
“Long Short-Term Memory.” LSTM network is a deep learning RNN that can solve the
fundamental problems of traditional RNN models and has become very popular in the field of
natural language processing. As of 2016, major technology companies use LSTM networks as
fundamental components in new products. For example, Google uses LSTM for speech
recognition on smartphones and Google Translate. The University of Montreal first developed a
library for Python called Theano to manipulate deep learning models. Google developed their own
library, TensorFlow, in 2015 to meet their needs for systems capable of building and training

neural networks to detect and decipher patterns and correlations. Keras, also developed in 2015, is
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a high-level neural networks API, written in Python and capable of running on top of either
TensorFlow or Theano. For academics, Keras is one of the most popular packages for deep
learning since it minimizes the number of user actions required for common use cases. More details

about “Keras” can be found at keras.io.
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CHAPTER 3. DATA COLLECTION

We collect data for ten states in the Corn Belt: lowa, Illinois, Indiana, Minnesota, Nebraska,
Kansas, Michigan, Ohio, Missouri, and South Dakota. All data is from 1980 to 2016. The data
range is restricted due to availability of weather data. The first 33 years are selected as the training
data, while the most recent four years are used as the testing data to explore the model’s predictive
capability. As lowa is the dominant corn planting state, we use it as our model testing state. The
data collection process consists of two parts: collection of raw data and feature selection and
preprocessing.

3.1 Outcome Variables

Historical corn yield data is collected through Quick Stats from the National Statistics
Service (NASS) for 37 years. Corn yield data is a yearly collected data at county level. The data
include 99 counties in lowa. Hence, there are 37*99=3663 records of historical yield data available,
with 3267 of them acting as training samples. Due to genetic gain in corn growth, corn yield has
increased through time. We adjust historical corn yield to the same base. Agricultural experts
predict 1.5% annual yield increase. In Figure 3.1 below, Li (2014) shows corn yield trends in lowa,
indicating that genetic gain is almost an annual constant number and increases greatly after 2000.
According to Li (2014), genetic gain is 2.5 bushels/acre per year from 1980 to 2000 and 4.67

bushels/acre per year after 2000.
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Figure 3.1: Corn yield trends in lowa, 1950-2013
Note: Figure 3.1 taken from Li (2014).

We try both adjustments in our model; however that raises a few more concerns. Which
year should the yield be adjusted to? Will that influence the prediction results? If all yields are
adjusted to the 2015 base year, will the 2015 prediction be better than other years? To answer
these questions, we train our model with corn yield adjusted to both 2013 and the 2015 base year.
The results show that there is no evidence for such concerns.

3.2 Predictor Variables

Three types of input variables closely associated with corn yield are available - hourly
weather data, soil quality data, and soil moisture data. Hourly weather data comes from Weather
Underground, a professional weather data company, and is representative of a 19x19 mile area,

which is more accurate than the commonly used weather station data. This is also our data
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contribution to the literature. We utilize weather data from April to October because the corn
growing season in the Corn Belt falls close to this period.

We choose raw data of three weather variables—precipitation, wind, and temperature.
Precipitation is an important factor for corn growth. Enough rainfall in the growing season
guarantees good yield, but floods ruin corn plants. High wind speed can damage corn crops by
uprooting plants. Maximum, minimum, and mean daytime temperature strongly influence yield.
Research shows that most plants do not grow any faster above 30°C. It is widely believed that
temperatures between 50°F and 86°F (10°C and 30°C) are best for crop growth, hence they use a
variable called Growing Degree Days (GDD) to measure the temperature effect on crop growth.
GDD, which measure of heat accumulation to predict plant development rates, is calculated as
follows:

GDD = Tmax ;_Tmin -T

base

where T_.. = min(86°F, daily maximum temperature),

T, = max(50°F, daily minimum temperature), and T, is the base temperature required

to trigger optimum growth (50°F for corn). Accumulated GDDs during the growing season are
an important factor in yield.

Soil moisture has critical impact on corn yield. The Palmer Drought Severity Index (PDSI)
is a long-term cumulative measure of water availability in the soil that spans from -10 (dry) to +10
(wet), with zero being normal moisture conditions. PDSI uses temperature data and a physical
water balance model to capture the basic effect of global warming on drought. PDSI is measured

monthly by the National Oceanic and Atmospheric Administration at the Crop Reporting District
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(CRD) level (see Figure 3.2). We match the counties within each district and assign the PDSI value

to those counties (i.e., counties in the same CRD have the same PDSI value).
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Figure 3.2: lowa Crop Reporting District map

Soil quality data comes from Dr. Hendricks at Kansas State University. Data is collected

from the gSSURGO database (a database for storing gridded soil survey results) and aggregated

to the county level using only areas classified as cropland according to the National Land Cover

Database. Thus, the data covers the whole Corn Belt at the county level. The data has over 100

variables, and each variable is a constant number for each county, since soil quality is not

considered to change much over time. We pick 14 variables from the data, which we think are
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most related to corn yield (see Table 3.1). Rootznaws and droughty are considered the most two

significant soil variables from expert knowledge.

Table 3.1: Soil Quality Variables List

Variables Explanation

ffd frost free days, number of days between the last freezing day in Spring and
first freezing day after that

sandtotal total sand (mineral particles 0.05mm to 2.0mm in diameter)

silttotal total silt (mineral particles 0.002mm to 0.05mm in diameter)

claytotal total clay (mineral particles less than 0.002mm in diameter)

om weight percentage of organic matter (decomposed plant and animal residue)

bulkDensity the oven-dry weight of soil material less than 2 mm

lep linear expression of the volume difference of soil fabric and oven dryness

caco3 the quantity of Carbonate (CO3) in the soil expressed as CaCO3

ec the electrical conductivity of an extract from saturated soil paste

soc0_150 soil organic carbon stock estimate (SOC) in standard layer

Rootznaws root zone available water storage (mm)

droughty soil droughty vulnerability determined by earthy major components

sand percentage of sand contained in the soil

share_cropland | cropland share of the whole county land

3.3 Variable Selection and Data Preprocessing

The time series of input variables can be expressed both in hourly and daily format (weekly
or monthly variable sequence does not this take into account as it averages too much information).
Each county for each year is a sample record with output value—yield and the corresponding input
time series falling into the growth period of April to October. Thus, the length of the input time

series {x} would be t=5136 for hourly input vectors or t=214 for daily input vectors. However,

for hourly inputs vectors, there are too many parameters needed to estimate with only 3267 training

samples; and, such long time series require large memory and computer resources for calculation,
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which would be time consuming and lose information since computer memory is limited.

Therefore, we take the daily input sequence {x,}with t=214.

The next question is variable selection. Even with the limited raw data we have, there are
still 28 candidate input variables. Besides the 14 soil quality variables and PDSI, there are also
max/min/mean day temperature, total daily rainfall, daily average wind speed, max day rainfall,
up-to-date accumulated rainfall, and GDD. Since July has been proven to be the most important
month for corn growth, rainfall and max temperature in July should be related. The ratio of acres
planted to corn divided by the average acres planted may also influence corn yield as farmers may
take less effort in farm management if they plant much less corn than average in a specific year.
Moreover, two interaction terms (max temperature*soil droughty and max*PDSI) are also
included. The idea is that for high temperatures the soil should be more humid than for low
temperatures.

First, we trained the model with all 28 variables, but our prediction turned out to be an
almost horizontal line. We then calculated the correlation between input variables and eliminated

the highly correlated ones. We create a correlation matrix with each cell being the correlation

. : A cov(x;,x;)  ELOG =, )(X; — 1]
coefficient. Correlation coefficient is computed by p, , = (%%, = SR L L |

05,0y, 0y, 0y,
the absolute value of P, is close to one, it means that these two variables are highly correlated.

However, this method did not work with soil quality data as soil quality data is a constant number

for each county, and correlation between constant numbers is pointless. Therefore, we use the

minimum redundancy maximum relevance (MRMR) method to select the soil quality variables.
Minimum redundancy maximum relevance (MRMR) is a feature selection method first

introduced by Peng, Long, and Ding (2005). It is computed in two parts:
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Minimize Redundancy:
: 1
mnD, D, =— > I(X,X,)
|S| X;\ X, €S
Maximize Relevance:

max R, Z 1(X;,Y)

| | X;eS
where S is the set of features, and 1(X;, X;) is the mutual information between features iand j.

Formally, the mutual information of two discrete random variables X and Y is defined as:

p(X,Y)
(X.¥)=2, 2, pC:Y)! g(p()p(y)j

xeX yeY

where p(x, y) is the joint probability function of X and Y . Mutual information is widely used as
a measure of the mutual dependence between the two variables X and Y . Maximum relevance
means maximizing the average mutual information between features and the target. Past feature
selection usually stops at identifying the best m features with the most individual mutual
information to target Y . In fact, different features may share redundant information on the target.
Thus, redundancy is another important factor to be considered in feature selection. In order to
characterize the most relevant subset of features whose size is limited to a given factor, we need
to balance the tradeoff between relevance and redundancy. Thus, the mRMR criterion is a
combination of the two above measures and defined as:

MRMR = max ZI(X,,Y) > (X, X))

Smes | |xEs | X;.X €S
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Induction is used for searching the mRMR candidate feature set. Suppose we already have S_ |,
in the feature set with m—1 features, then the task is to select the m™ feature from the set X \S_;
that is, to optimize the condition:

max {I(XJ.,Y)—L > I(xj,xi)}

m-1,=
Thus, we get different sequential feature sets S, =S, c...c S, , = S, . After comparing all the
sequential feature sets, we find the range of k,1<k <n, called Q, within which the classification
error is constantly small. Within Q, we find the smallest classification error " =mine, . The

optimal size of the candidate feature set, n", is chosen as the smallest k that corresponds to €.

We then apply backward or forward selection to add or remove features from S . , with the

selection based on the criterion to make the largest classification error reduction. Finally, we can
rank the ordered features. The higher the rank is, the more relevance the feature has. Typically,
mRMR works with categorical target variables, hence we need to transform the yield variable into
a categorical format at the start of the mRMR selection.

Referring to the results of the correlation matrix and mRMR feature selection, after trial
and error with different combinations of input variables and expert knowledge, we figure the 10
“best” input variables for corn yield prediction: each of max/min/mean temperature, total daily
rainfall, wind speed, soil root space for holding water, soil droughty, PDSI, cumulative rainfall,
and GDD.

Even when using a daily input series, 3267 training samples are not enough. Thus, another
contribution we make to the literature is finding a creative way to generate more training samples.
By picking two or three counties from the same CRD in lowa and using the average of their yield

and input variables respectively, we create a new sample. There are nine CRDs in lowa; hence, the
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total number of training samples combined with combination samples increases to 70,026. This

9 9
number is computed through 3267 +33x (> C(k;,2)+> C(k;,3)), where k; is the number of
i=1 i=1

counties in each CRD, where {k.}={12,11,11,12,12,10,9,11,11} for lowa. These combination

samples should be reasonable since PDSI is also collected at the CRD level and all other data are
also averaged number for county area (the most precise data point should be each farmland, which
is not available).

Ten input variable sequences are stored in the format of a 3D tensor cube (see Figure 3.3
for an example of a 3D tensor cube). This is a key step to make our data fit into the model. All
kinds of input data should be converted into 3D tensor format for LSTM training in computers.
Figure 7 is an example of 3D tensor cube. X-axis indicates the number of input variables, Y-axis
is the length of the time series, and Z-axis is the number of samples. Hence the dimension of our

3D tensor cube is 10x 214 x 70026 . The matrix we face is a sample of input variables {x } with the
dimensions 10x214 , where x, = (mean temperature, rainfall, windspeed, PDSI, rootznaws,

droughty, cumulative GDD, cumulative rainfall, max temperature, min temperature) for
t=1,...,214, which is the row vector of the matrix. PDSI is monthly data, so it repeats once for each

day in each month, while rootznaws and droughty repeat 214 times since they are constant.
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Figure 3.3: 3D tensor cube example
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CHAPTER 4. METHODOLOGY

Chawla et al. (2016) use Bayesian Network and data from 2005 to 2009 to predict lowa’s
2010 county-level corn yield. We follow this method and extend their work using more predictors
and 35 years of county-level data across five Corn Belt states (lllinois, Indiana, lowa, Minnesota,
and Nebraska). As BN works with categorical response variable, corn yield is needed to be
discretized at the beginning. We use ChiMerge, an algorithm introduced by Randy (1992), to
convert numeric values into discrete values. The network is trained through Genie introduced by
Druzdzel (1999). Though BN could successfully predict the yield in the right category, the results
(see the Appendix) show that the performance is bad for extreme cases. BN has obvious
disadvantage in yield prediction. First, BN works with categorical data, and while corn yield is
continuously variable, discretizing the yield into intervals will make the accuracy too low.
Moreover, the way Chawla et al. (2016) calculate the actual yield number, which is sums the
expected average, does not distinguish the difference in weather predictors. This method leads to
yields in the same category having the same calculated actual yield predictor. Thus, in order to get
higher accuracy in corn yield prediction, we look for a machine learning method to work with
continuous time series data.

First, we tried an unsupervised method. The inspiration came from Akintayo and Sarkar
(2015). There are also several applications for reference, such as Liu (2017) and Jiang (2017). We
use their method for classification of a slow time epoch to compute the probability representing
the similarity of weather conditions between testing and historical years in different counties. Our
problem shares similar structure with this paper. The input variable data is hourly time series data
for each year in each county as described in the data section. Due to the format of data, our task

fits a classification problem. Each input time series data is first transited into symbolic sequences
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using statistical similarity-based discretization and maximally bijective discretization. Then the

probability can be obtained by the following expression:

<o A (NN +[Z]-D BN+ N
SR Y b Smrrie B b oy

where S isthe testing symbolic sequence and S' is the historical symbolic sequence. Each symbol

string S' is represented as slisiz...s:qi , SO we take the neighboring two symbols as a state. This
follows a D-Markov machine where |Q| is the number of states, |Z| is the column number of the

Markov transition matrix, and N! is the number of times a symbol o, in S' is emanated from

n

the state g, . Then the number of occurrences of the state g, in the state sequence is given by

R - - ~
N, = Z N, whereN_and N_. represent the same number in the sequence S . More details of
n=1

mn ?

the formulation can be found in Akintayo and Sarkar (2015). We match our target year of a specific
county with a training year by computing the probabilities for the testing sequence with all
historical sequences and picking the highest year. For example, Madison County 2015 has the
highest probability with Wapello County 1996. Then we take the yield of Wapello County 1996,
adjusted with genetic gain, as our predicted yield for Madison County 2015. However, the method
fails as we cannot use different weights to indicate the contribution of the input variables to the
yield through time. For example, weather conditions in July are widely believed to have the most
significant influence on corn yield; however, this method does not have the capability to capture
this important expert knowledge. Though the method has fatal flaws, we still think that it is a good
way to refine the pattern and characteristics of the input variables and may be a promising method
for data preprocessing of our final model. We believe the improvement of our model can be

discovered from here.
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Finally, we turn to a supervised method—RNN. RNN is a family of neural networks for
processing sequential data that has become very popular in deep learning for text prediction and
speech recognition. RNN is a black-box method, which is powerful in handling nonlinearity and
interaction relation but falls short of causal explanation. Corn yield depends on a complex set of
economical, meteorological, agricultural, and financial inputs, which makes prediction very
difficult. The advantage of RNN in learning complex interdependent relations between inputs and
outputs makes us believe that it will perform well in crop yield prediction.

This paper is the first to apply RNN to crop yield prediction and shows the power and
possibility of RNN in this area. The most difficult part is how to fit our problem into the format of
RNN. Even though RNN was created for time series data, previous applications only focus on the
prediction of the next following points in the same time series. This paper indicates a novel way
that RNN can be used to solve crop yield prediction.

4.1 Recurrent Neural Network

Figure 4.1 shows the representation of a regular RNN. The left side is the simple

representation and the right side is the same model unfolded. The network consists of three layers:
input, hidden, and output, where x® is the input sequence, y® is the output sequence, and h® is
a series of hidden states. The number of hidden layers is not constrained to one. In the deep learning
recurrent neural networks, the number of hidden layers can reach eight or more. Adding hidden
layers can help to study the more complex structure of the model, but also requires more data.
U,V,W are shared weights that we need to learn, and f is an activation function where
h® = f (Ux® +Wh"™) . The corn yield prediction problem could not fit into a regular RNN, so we

use the many-to-one RNN model here. The many-to-one RNN model is suitable when there is

sequence input with one output, thus it is perfectly match with our data described in the data section.
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4.2 Long Short-Term Memory (LSTM)

The mathematical challenge of learning long-term dependencies in recurrent networks is
called the “vanishing gradient problem.” As we propagate the gradient back in time, the magnitude
quickly decreases. That is to say, as the input sequence gets longer, it becomes more difficult to
capture the influence from the first stage. The gradients to the first several input points vanish and
are approximately equal to zero (rarely the gradients will explode with much damage to the
optimization). Therefore, a special RNN model called Long Short-Term Memory (LSTM) was
developed. LSTM uses the identity function with a derivative of one. As a result, the back
propagated gradient remains constant instead of vanishing or exploding when passing through.
Figure 4.3 shows the difference in the framework between regular RNN and LSTM, where tanh is
a commonly used activation function (can be any other functions such ReLU or sigmoid). Clearly
LSTM has a more complex structure to capture the recursive relationship between the input and
hidden layer. We call the cell between the input and hidden layer LSTM cell.

LSTM adds a new sequence {c} called cell state to RNN. Cell state is a space specifically

designed for storing past information (i.e., the memory space) that mimics the way the human
brain manipulates information when making decision. The left part of the cell in Figure 4.4 is the
forget gate layer, which makes the decision whether past information stored in the cell state should
be discarded or not. The middle is the input gate layer, which decides whether new information
from the input should be added or not. The operation is executed to update old cell state c, ,to c,.

This is when old information is dropped and new information added. We can get the output as h,

by operating the right part, which is the same process as regular RNN.
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Figure 4.4: Details of an LSTM cell

In conclusion, the behavior of the memory cell is determined by three gates: input i, , output o, ,
and forget f,. The updated equations are as follows:
I, = sigmoid (W;h_, +U;x, +D,)
f, = sigmoid (W, h_, +Ux, +b;)
o, = sigmoid (W,h,_, +U x, +b,)
¢, =tanh(W_h_, +U_x, +b,)
c,.=foc,+iOC
h, =0, © tanh(c,)

where all U e R*™ W e R** beR? are learnable parameters and the operator © denotes the

element-wise multiplication.
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Figure 4.5 shows the structure of our final LSTM model used for county-level corn yield
prediction in the Corn Belt.

4.3 Training of LSTM

Loss function is a measure of how good a prediction model does in terms of being able to
predict the expected outcome. The loss function we picked for our LSTM model is the mean
squared error (MSE). The target of training the prediction model is to find parameters that could
achieve the minimum point of the loss function, thus turning it into an optimization problem. The
algorithm to learn the recurrent neural network is gradient descent and back-propagation through
time (BPTT). Gradient descent is one of the most popular algorithms to perform optimization. It

is an efficient algorithm to search for the local minimum of the loss function. The BPTT algorithm

is used to compute the gradient for the equation h® = f (Ux") +Wh"™) and the loss function. The
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core idea behind BPTT is the composite function chain rule. The nodes of our computational graph

include the parameters U,V ,W and constant terms as well as the sequence of nodes indexed by t

for x and h™. Once the gradients on the internal nodes of the computational graph are obtained,
we can obtain the gradients on the parameter nodes. The parameters are shared across time steps.
Given a starting point, calculating the gradient of that point and searching in the direction of the
negative gradient is the fastest way to search for a local minimum. Then we can update the
parameters with iterations of the gradient descent optimizer by searching for a smaller local
minimum.

Our LSTM model was learned using the Keras Python package on top of Theano backend.
We assigned a linear relation between the hidden and output layers. There are several choices for
gradient descent optimizer in Keras. We tried both Stochastic Gradient Descent (SGD) and
RMSprop optimizer. Our final LSTM model used RMSprop optimizer as this optimizer is usually
a good choice for RNNs. Besides the parameters that we need to learn from the data, there is also
another kind of parameter specified manually for LSTM models, called a hyperparameter. A model
hyperparameter is a configuration that is external to the model whose value cannot be estimated
from data. Hyperparameter searching is an important process before the commencement of the
learning process. The choice of the hyperparameter influences the learning result.

The hyperparameters that we decided manually for our LSTM model include the number
of hidden nodes within each hidden layer, batch size, dropout rate, learning rate, momentum, and
decay rate. Batch size is the number of training examples utilized in one iteration of SGD or
RMSprop optimizer. The higher the batch size, the more memory space needed. Dropout is a
technique where randomly selected neurons are ignored during training. A 0.2 dropout rate means

that one in five hidden neurons will be randomly excluded from each updated cycle. Dropout could

www.manaraa.com



32

make the network less sensitive to the specific weights of neurons, and in turn solve the overfitting
problem. Learning rate, momentum, and decay rate are important parameters for SGD optimizer.
They would decide the speed of convergence of the network. The learning rate is how quickly a
network abandons old beliefs for new ones. With a large learning rate, we take huge jumps to reach
the bottom. There is also a possibility that we will overshoot the global minima (bottom) and end
up on the other side of the pit instead of the bottom. Thus, we will never be able to converge to the
global minima, but instead wander around. However, it will take too much time to converge if the
learning rate is too small. Hence, it is often useful to reduce the learning rate as the training
progresses, which is what the decay rate is used for. Momentum is an argument in SGD optimizer
to obtain faster convergence. RMSprop optimizer is similar to the SGD optimizer with momentum.
It uses a moving average of squared gradients to normalize the gradient itself. We only need to
define the learning rate for RMSprop optimizer.

Table 4.1: Hyperparameters Choice Set List

Hyperparameters Choice Set Optimizer
Hidden nodes [8, 16, 32, 64, 128, 214] SGD, RMSprop
Batch size [16, 64, 128, 512, 1024] SGD, RMSprop
Dropout rate [0.0,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7] SGD, RMSprop
Learning rate [1e-07, 1e-06, 1e-05, 1e-04, 0.001] SGD, RMSprop
Momentum [0.0001, 0.001, 0.01,0.05, 0.1] SGD
Decay rate [0.0001, 0.001, 0.01,0.05, 0.1] SGD

Nobody has the ability to know the best value for a model hyperparameter of a given
problem. We may use rules of thumb, copy values used on other problems, or search for the best
value by trial and error. What we did was assign a set of numbers by experience for these

hyperparameters and let the machine randomly pick one value in the set for each hyperparameter.
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The choice set is listed by each hyperparameter in Table 4.1. Usually after searching for over 300
models with different combinations of hyperparameter settings, we can find the *best” model and
the corresponding ‘best” hyperparameters.

4.4 Model Settings

There are still some questions about the model settings. Should we use one, two, or more
hidden layers? Will more related input variables improve the prediction? Will more created
training samples generated with combinations described in the data section improve the prediction?

We tried all these different settings and discuss the results in the next section.
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CHAPTERS. RESULTS AND DISCUSSION

Our initial model starts with an hourly input vector {x } where t=5136 and yield is adjusted

to both 2013 and 2015 base with 1.5% yearly increase. We have 3267 samples and one hidden
layer. The input variables are hourly temperature, rainfall, wind speed, PDSI, soil root space for
holding water, soil droughty, accumulative rainfall, and GDD by hour. Figure 18 shows the
prediction results for this original model. The left part is the results for yield adjusted to the 2013
base while the right is adjusted to 2015. The black line is our prediction and the red line is true
yield. There is also a picture of the absolute error between the prediction result and the true yield.
Agricultural experts are convinced that it will be amazing if a model without farm management
data can make over 8% of the county-level yield prediction fall into the +/-20 region of the true
yield. Therefore we include the absolute error as a standard line to judge the performance of the
model. After comparing the results between the left and right part, we conclude that whichever
year the yield is adjusted to, there will be hardly any influence on prediction results. Therefore, we
uniformly adjust the yield to 2013 base for all models.

Due to the cons of hourly input vectors introduced in section 3.3, we trained the initial
model with daily input vectors. All the model settings are the same as the hourly input vector
model except two more input variables—max and min day temperature—are added. Absolute error
in Figure 19 indicates that the performance of this model is good. However, the prediction line
does not match the true yield curve well. We try to improve the model with three changes in the
settings: (a) using two hidden layers instead of one; (b) adding more training samples created with
the combination method (two+three counties average); and, (c) including more input variables
(variable selection from the 28 variables introduced in section 3.3). Table 5.1 shows that the 10

“best” input variables with two hidden layers and combination samples has the smallest MSE.
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Figure 5.7 indicates the performance of this “best” model. Nevertheless, the fluctuation of
prediction is still less than the true yield. Does this average trend exist because of including too
many combination samples? To be sure, we trained the “best” model again with only two county
combination samples added, which totals 19734 samples. And we also use the constant genetic
gain adjustment with yield data.

Table 5.1: Comparison of Different LSTM Model Settings

Number of input variables | Number of samples | Hidden layers Mean squared error

3267 1 255.404

10 70026 1 211.6265
3267 2 233.2547
70026 2 191.0535

15 70026 2 361.9132

16 70026 2 Very large

28 70026 2 Very large

Table 5.2: Details of Different Selected Sets of Input Variables

Number Input variables Selection criterion

10 Refer to section 3.3 MRMR, expert knowledge
and trial and error

Mean temperature, rainfall, wind speed, PDSI,
rootznaws, droughty, accumulative gdd, acre_share,
15 frost free days, total clay, organic matter, electrical Correlation matrix
conductivity, max rainfall, rainfall in July, max
temperature in July

16 All input variables excluding the twelve soil quality MRMR
variables except rootznaws and droughty

28 Refer to section 3.3 all input variables
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Table 5.3: Comparison of State-Level Predictions of Different LSTM Model Settings

year yield | NASS 1 layer 1 layer com 2 layers 2 layer com
2013 164.00 169 157.59 160.80 165.39 161.15
2014 178.00 183 185.27 180.21 177.62 185.12
2015 192.44 189 188.26 185.39 180.65 184.71

Table 5.4: Comparison of State-Level Predictions with Two “best” Models

year yield NASS percentage adjustment constant adjustment
2013 164.00 169 171.33 165.57
2014 178.00 183 179.13 184.13
2015 192.44 189 192.22 190.50
2016 203.04 199 189.13 195.45

Figure 5.8 shows the prediction with two combinations of samples and constant adjustment.
We can see that our prediction perfectly captures the fluctuation of the yield. Tables 5.3 and 5.4
compare the prediction results at the state level. NASS regularly report their state-level yield
prediction every August, September, October, and November. Here we compare with their
November prediction (final prediction). For 2013, constant adjustment has the best prediction, for
2014 and 2015, percentage adjustment perfectly predicts the yield while NASS and constant
adjustment has almost the same performance. However, for 2016, our predictions are much lower
than the actual yield, which indicates that the genetic gain adjustment may need to be higher for
year 2016.

We also observed that the absolute predicting error was very large for some counties. Do
these counties have common properties? Are they neighboring counties? Hence we marked the
best and worst five counties in yield prediction for each year in the map. The results are presented

in Figures 5.1-5.4. The best five counties were filled with green, while the worst five counties were
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filled with red. After comparing these four figures, there is no obvious trend or commonality

among these counties. This indicates that we did not miss any important explanatory variables.

Prediction accuracy was not influenced by the geographical position of the county. The reason for

bad county-level prediction is complex. One explanation is that maybe our prediction is more close

to the true yield. The actual yield data downloaded from the USDA website is not the true yield at

the county level. The USDA only collect corn yield data at the state level, and they distribute the

data into county level according to planting area information. Another possible issue is that our

LSTM model could not capture extreme cases such as drought or flood. Thus, if extreme conditions

occurred, the prediction for that specific county could be inaccurate.
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CHAPTER 6. EXTENSIONS

6.1 Prediction of Corn Belt

We show in section 5 that our LSTM performs well in lowa. Will it also perform well in
other states in the Corn Belt? How should we expand the model to other states in the Corn Belt?
We have three choices: (a) apply the “best” lowa model to all other states; (b) train models
separately for each state; and, (c) train the “best” model with all data from the Corn Belt. We pick
Illinois to test option one since Illinois shares the most corn condition similarities with lowa.
Figure 22 shows that the lowa model does not predict the Illinois yield well, which indicates that
the lowa model could not fit the other states.

Next, we collect all the data from the 10 states in the Corn Belt to build up a comprehensive
model. We still apply the best setting of the model. The comprehensive model consists of two
hidden layers, 10 explanatory variables, and 214 days of weather data series. We set two different
models under two kinds of adjustment of yield data—percentage and constant. There are 28617
records for training. Since the number of samples is large enough, we did not create combination
records here. We test the comprehensive model with lowa and Illinois data respectively since these
two states are the most important corn planting states. Figures 6.3 and 6.4 present the prediction
result. Both figures show the same problem with the model containing all candidate variables—
our prediction varies less around the average line. We feel the comprehensive model may perform
well for aggregated state-level yield prediction as it is more averaged, but it failed to capture the
most fluctuation trend; thus, the comprehensive model is not good choice since our first goal is to
get accurate county-level yield prediction. Even though we include all data from different states,
many unknown variables correlated with each state did not get included in the model. LSTM then

only keeps the common information and throws away all other noises, leading to the result that
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our big Corn Belt model learns less information than does a separate model for each state.
Therefore, the best choice is to train models separately for each state.

Model settings for each state are the same as the lowa model. In order to guarantee the
result is convictive, we search the best model with smallest MSE among over two hundred trained
models for each state. Since we are uncertain about which yield adjustment works better, two
models under different adjustment were trained for each state. According to the MSE, percentage
adjustment worked much better for most of the states except South Dakota. Even though the MSE
of the South Dakota model with constant adjustment is still very large, it is significantly smaller
than the percentage adjustment. Two county combination samples are still added for each model.
The map of agricultural CRDs for each state is attached in the Appendix. Among all the remaining
nine states, Missouri is a special case. Missouri is divided into nine CRDs according to the official
documentation; however, PDSI for Missouri is recorded by six areas. This information can be
found in Missouri Drought Plan, Water Resources Report Number 69. Therefore we added
combination samples referring to the drought plan instead of the nine CRDs. Another difference
from the lowa case is that areas for planting corn kept changing for many states. Unlike lowa and
Illinois, where the whole state is used for planting corn, only small parts of the state is used for
corn production in Kansas, Missouri, and South Dakota. The area is also changing due to climate
change—several counties used to plant corn but abandoned it and new counties started planting
corn in recent years. Due to this data missing problem, we only include counties that have full
yield information for the testing period (2013-2016). Therefore, only 35 of 105 counties in Kansas,
38 of 114 in Missouri, 40 of 83 in Michigan, and 35 of 66 in South Dakota have been predicted.
For training data, we include all the available data that the yield is not equal to zero. Detailed

prediction results are attached in the Appendix. As +/- 20 error is good performance standard, MSE
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should not be much greater than 400. The county-level prediction for Kansas and South Dakota is
worse as the MSE is higher than 700. There are only 8822 samples for training in South Dakota,
hence the bad result may come from the lack of data. Kansas is a very special state, though we
have 14398 historical records, only 35 counties are available for testing. The planting area in
Kansas has changed too much, leading to a huge amount of information noises existing in the

training data. Therefore, the prediction performance is below expectation.

Table 6.1: Model Information for All Corn Belt State Except lowa

State No. of samples No. of counties mean squared error

percentage constant

Illinois 21150 102/102 354.18 414.64
Indiana 17094 70/92 329.20 461.21
Kansas 14398 35/105 700.81 1980.37
Michigan 10500 40/83 295.46 755.30
Minnesota 15232 68/87 260.29 427.30
Missouri 32818 38/114 434.64 987.56
Nebraska 19589 71/93 463.06 1156.16
Ohio 14398 71/88 316.53 713.38
South Dakota 8822 35/66 888.70 723.29

We also aggregate the prediction to state level for each state to compare with the USDA
prediction in November. In order to make the comparison straight and clear, we only present the

mean absolute error (MAE) and mean absolute percentage error (MAPE) of the prediction for

100% Z”:

=1

A\_Ft|

2013-2016. MAPE is calculated by M = |,Where A isthe actual yield, F, isthe

forecast value, n=4 here. According to the results listed in Table 6.2, all the MAPEs are less than
7% and most of them are even less than 3%, which is really great prediction. Half of the predictions

beat the USDA prediction, while the MAPE of Kansas, Missouri, and South Dakota was about
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5%-7%, which are the states that only include less than 40 counties for testing. Even though the
result is worse than USDA for these states, the prediction accuracy is still better than other research
using machine learning methods for corn yield prediction. When we aggregate the results to the
whole Corn Belt in Table 6.3, the result are good. The prediction error is even less than 1
bushel/acre and also beats the USDA prediction.

Table 6.2: State-Level Prediction Comparison

State LSTM_NOV NASS_NOV
MAE (bu/ac) MAPE (%) MAE (bu/ac) MAPE (%)

lowa 4.31 2.29 4.37 241
Illinois 2.85 1.56 3.50 1.92
Indiana 2.96 1.74 3.75 2.27
Kansas 10.14 6.95 4.25 3.02
Michigan 6.09 3.79 3.25 2.03
Minnesota 4.24 2.38 4.50 2.75
Missouri 9.92 5.88 3.25 2.06
Nebraska 3.41 1.95 2.50 1.39
Ohio 3.42 2.01 4.00 2.56
South Dakota 7.76 5.29 6.75 4.46

Table 6.3: Corn-Belt-Level Prediction Comparison

Year Yield | LSTM_NOV | NASS NOV
2013 161.78 162.9 164.29
2014 175.60 175.44 178.49
2015 173.1 173.4 173.04
2016 181.09 179.34 181.54
MAE

(bushels/acre) 0.8325 1.4475

MAPE (%) 0.48 0.87
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Table 6.4: State-Level Prediction for Illinois in November

Illinois (Percentage): 102/102

Year | Yield | LSTM_NOV | NASS NOV | +/-20 | +/-30
2013 | 178 175.1381 180 80% 96%
2014 | 200 196.3075 200 72.5% 91%
2015 | 175 170.1886 168 68% 88%
2016 | 197 196.9654 202 63% 82%

Table 6.5; State-Level Prediction for Indiana in November

Indiana (Percentage): 70/92

Year | Yield LSTM_NOV | NASS_NOV | +/-20 | +/-30
2013 | 177 172.3266 174 81% 97%
2014 | 188 186.8123 186 84% 97%
2015 | 150 152.5922 156 60% 81%
2016 | 173 176.3785 177 70% 86%

Table 6.6: State-Level Prediction for Kansas in November

Kansas (Percentage): 35/105

Year | Yield LSTM_NOV | NASS_NOV | +/-20 | +/-30
2013 | 126 124.0206 130 34% 60%
2014 | 149 129.7874 157 40% 63%
2015 | 148 136.5575 148 77% 91%
2016 | 142 134.0558 147 74% 86%

Table 6.7: State-Level Prediction for Michigan in November

Michigan (Percentage): 40/83

Year | Yield LSTM_NOV | NASS _NOV | +/-20 | +/-30
2013 | 155 153.8289 156 72.5% | 87.5%
2014 | 161 145.6939 166 65% 92.5%
2015 | 162 155.11 167 85% 95%
2016 | 157 155.9927 155 67.5% 90%
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Table 6.8: State-Level Prediction for Minnesota in November

Minnesota (Percentage): 68/87

Year | Yield LSTM_NOV | NASS_NOV | +/-20 | +/-30
2013 | 159 158.8651 164 76% 94%
2014 | 156 160.8041 165 2% 91%
2015 | 188 179.035 187 85% 93%
2016 | 193 196.067 190 84% 94%

Table 6.9: State-Level Prediction for Missouri in November

Missouri (Percentage): 38/114

Year | Yield LSTM_NOV | NASS_NOV | +/-20 | +/-30
2013 | 136 138.7733 133 66% 84%
2014 | 186 165.8375 181 63% 82%
2015 | 142 145.904 145 74% 89%
2016 | 163 150.1406 165 58% 82%

Table 6.10: State-Level Prediction for Nebraska in November

Nebraska (Percentage): 71/93

Year | Yield LSTM_NOV | NASS_NOV | +/-20 | +/-30
2013 | 169 163.2297 169 66% 82%
2014 | 179 178.0822 181 70% 85%
2015 | 185 183.7879 187 62% 86%
2016 | 178 183.7312 184 68% 86%

Table 6.11: State-Level Prediction for Ohio in November

Ohio (Percentage): 71/88
Year Yield LSTM_NOV | NASS NOV | +/-20 | +/-30
2013 | 174 170.3723 174 75% 96%
2014 | 176 168.7132 177 79% 97%
2015 | 153 151.3659 163 62% 80%
2016 | 159 157.844 164 76% 92%
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Table 6.12: State-Level Prediction for South Dakota in November

South Dakota (Constant): 35/66

Year | Yield LSTM_NOV | NASS_NOV | +/-20 | +/-30
2013 | 137 150.7581 145 69% 86%
2014 | 148 154.2152 151 54% 71%
2015 | 159 162.5958 162 54% 77%
2016 | 161 168.4958 148 34% 60%

6.2 Early Prediction

NASS reports their yield prediction annually in August, September, October and
November. November is the final prediction when all the information for corn growth is known
since corn is usually harvested in October. Hence, any prediction that is prior to the harvest time
is defined as the early prediction. Accurate early prediction is important—it will not only influence
corn storage decisions, but also the corn futures market. USDA reports their estimate of total corn
harvest acreage June 30 every year. Starting in July, combined with early corn yield prediction,
corn production estimates are made until harvest in October. Many factors influence futures price,
but estimated corn production is the most influential factor from July to October.

6.2.1 Early Prediction in lowa

We trained three early prediction models for lowa with data from August, September, and
October, respectively, to compare with results from NASS (i.e. y=122, 153, and 183 for the 3D
tensor cube in section 3.3). Figure 6.1 summarizes the prediction results of NASS and our LSTM
model. All our models are trained with almost 700 hyperparameter sets, which means we should
reach an optimal model. The grey line is the actual yield, the red line is our prediction, and the
blue line is the USDA prediction. Most of our early prediction results are better than the USDA
prediction, which indicates the strong power of the LSTM method in making early prediction with

limited data. We also notice a trend that predictions in November are usually worse than in October.
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This is because we could not know the accurate harvest date for each year and data after the harvest
date is included in the training data, thus resultant redundant and noisy information has been

learned by the model and influences the final prediction.
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Figure 6.1: Yield prediction comparison between NASS and LSTM
6.2.2 Early Prediction in Corn Belt

For the nine Corn Belt states other than lowa, we only made early predictions in August.
Still, we compared our results at the state (Table 6.13) and Corn Belt level (Table 6.14),
respectively, with the USDA prediction. Half of the MAPEs are less than 5% and all MAPEs are

less than 9%. Six of the ten states beat the USDA results. This indicates that LSTM still works
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well in early prediction around the whole Corn Belt. The results at the Corn Belt level are only

1.339 bu/acre away from the actual yield, which means that we are able to predict the yield as early

as August with only 0.78% difference between our prediction and USDA statistics.

LSTM is also available for daily prediction. It would be too much work to train separate

models for each day to make daily predictions. Therefore, we can use the best model from sections

5 and 6.1 for each state, input known explanatory variables data, and fill unknown data with

expected values. Weather and soil humidity data after the date on which the daily prediction is

made is the unknown data. The expected input values can be either past 10-year average or from

the professional prediction in weather channels if it is available (IBM’s Weather Underground,

Weather Channel and Accuweather are good resources, weather prediction is usually available for

30 days in the future and accurate for only one week).

Table 6.13: Comparison of State-Level Early Prediction in August

State LSTM_AUG NASS_AUG
MAE MAPE (%) MAE MAPE (%)

lowa 3.29 1.75% 6.12 3.23%
Illinois 4.55 2.43% 1.75 4.14%
Indiana 9.22 5.59% 10.50 6.11%
Kansas 9.87 6.78% 5.25 3.86%
Michigan 6.00 3.76% 2.75 1.74%
Minnesota 6.75 4.03% 8.00 4.72%
Missouri 9.93 5.82% 10.75 6.47%
Nebraska 5.38 3.06% 6.25 3.56%
Ohio 9.44 5.61% 5.50 3.51%
South Dakota 13.12 8.91% 6.25 4.03%
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Year Yield LSTM_AUG | NASS AUG
2013 161.78 160.3323 157.3596
2014 175.60 173.0495 172.4956
2015 173.1 172.6832 172.8598
2016 181.09 180.1483 180.7805
MAE

(bushels/acre) 1.339 2.019

MAPE (%) 0.78 1.20

State Level Early Prediction Results in August in detail:

Table 6.15: State-Level Prediction for lowa in August

Year | Yield | LSTM_AUG | NASS_AUG
2013 | 164 163.44 163
2014 | 178 183.13 185
2015 | 192.44 189.14 183
2016 | 203.04 198.89 196
Table 6.16: State-Level Prediction for Illinois in August
Year | Yield | LSTM_AUG | NASS AUG
2013 | 178 168.98 165
2014 | 200 193.42 188
2015 | 175 173.98 172
2016 | 197 195.43 200
Table 6.17: State-Level Prediction for Indiana in August
Year | Yield | LSTM_AUG [ NASS_AUG
2013 | 177 171.85 166
2014 | 188 181.72 179
2015 | 150 165.5 158
2016 | 173 182.96 187

Table 6.14: Comparison of Corn-Belt-Level Early Prediction in August

www.manaraa.com



Table 6.18: State-Level Prediction for Kansas in August

54

Year | Yield | LSTM_AUG | NASS_AUG
2013 126 123 116
2014 149 133.17 145
2015 148 132.9 152
2016 142 136.45 145

Table 6.19: State-Level Prediction for Michigan in August

Year | Yield [ LSTM_AUG | NASS_AUG
2013 | 155 150 158
2014 | 161 148.61 161
2015 | 162 157.24 165
2016 | 157 158.87 152

Table 6.20: State-Level Prediction for Minnesota in August

Year | Yield | LSTM_AUG | NASS_AUG
2013 | 159 169 166
2014 | 156 164 168
2015 | 188 185.4 184
2016 | 193 186.57 184

Table 6.21: State-Level Prediction for Missouri in August

Year | Yield | LSTM_AUG | NASS_AUG
2013 | 136 132.47 130
2014 | 186 159.69 160
2015 | 142 147.18 150
2016 | 163 158.31 166
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Table 6.22: State-Level Prediction for Nebraska in August

55

Year | Yield | LSTM_AUG | NASS_AUG
2013 | 169 159.36 161
2014 | 179 175.6 173
2015 | 185 178.8 187
2016 | 178 175.73 187

Table 6.23: State-Level Prediction for Ohio in August

Year | Yield [ LSTM_AUG | NASS_AUG
2013 | 174 166.61 172
2014 | 176 158.38 177
2015 | 153 160.05 168
2016 | 159 164.71 163

Table 6.24: State-Level Prediction for South Dakota in August

Year | Yield [ LSTM_AUG | NASS_AUG
2013 | 137 156.5 138
2014 | 148 163.34 139
2015 | 159 167.47 160
2016 | 161 170.18 147
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CHAPTER 7. CONCLUSION

This paper describes the prediction of county-level corn yields in the Corn Belt area using
the deep learning method LSTM. We develop a novel way to apply LSTM in crop yield prediction
and are convinced that LSTM can be a powerful option for crop yield modelling. Our prediction
is only 0.83 bushel/acre lower than actual corn yields in the Corn Belt. Eighty percent of our LSTM
model predictions fall in the +/-20 bushel/acre accuracy region. Results show that our LSTM
model can provide good early prediction and accurate Corn Belt county-level corn yield prediction
without farm management and genetic data. Our LSTM models for county-level corn vyield
prediction in the Corn Belt area is a good supplement and improvement to the USDA prediction.
This supplement and improvement will contribute to eliminating the information asymmetry

problem that arises from the success of private companies in crop yield prediction.
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APPENDIX. ADDITIONAL MATERIAL

Tables A.1-A.9 are results for a Bayesian Network. State data means the BN is trained with state
data only, full data means that BN is trained with all data gathered from lowa, Indiana, Illinois,

Nebraska, and Minnesota.

Table A.1: Confusion Matrix with State Data for lowa

Predicted yield (Bushels/acreer)
Yield(Bush | Below 54 | 54-77 77-106 106-147 147-174 174 Above
Below 54 0 20 0 0 0
54-77 0 77 0 0 0
77-106 0 2 0 18 0 0
106-147 3 0 0 153 18 0
147-174 4 0 0 13 175 2
174 Above 0 0 0 0 8 1
Table A.2: Confusion Matrix with State Data for Illinois
Predicted yield (Bushels/acreer)

Yield(Bushels/acre) | Below 56 | 56-80 80-107 107-147 | 147-173 | 173

Below 56 0 3 0 1 0 0
56-80 6 40 29 3 0
80-107 1 20 87 27 0
107-147 1 4 57 55 25 0
147-173 0 1 1 119 0
173 Above 0 0 0 16 0
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Table A.3: Confusion Matrix with Full Data for Illinois

Predicted yield (Bushels/acreer)
Yield(Bushels/acre) | Below 61 | 61-101 101-125 | 125-161 | 161-196 | 196
Below 61 0 3 0 0 1 0
61-101 0 32 34 4 0
101-125 0 27 87 11 17 0
125-161 0 20 49 38 35 0
161-196 0 0 0 1 120 0
196 Above 0 0 0 16 0

Table A.4: Confusion Matrix with State Data for Indiana

Predicted yield (Bushels/acreer)
Yield(Bushels/acre) | Below 46 | 46-84 84-131 131-163 | 163-204 | 204
Below 46 55 36 6 0 0 0
46-84 31 46 28 0 0 0
84-131 2 16 111 1 7 0
131-163 0 0 20 2 13 1
163-204 0 0 8 4 26 1
204 Above 0 0 0 0 19 12

Table A.5: Confusion Matrix with Full Data for Indiana

Predicted yield (Bushels/acreer)
Yield(Bushels/acre) | Below 61 | 61-101 101-125 | 125-161 | 161-196 | 196
Below 61 69 21 7 0 0 0
61-101 36 29 40 0 0 0
101-125 5 9 116 0 7 0
125-161 0 0 20 0 14 2
161-196 0 0 6 2 29 2
196 Above 0 0 0 2 29 0
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Table A.6: Confusion Matrix with State Data for Minnesota

Predicted yield (Bushels/acreer)

Yield(Bushels/acre) | Below 53 | 53-75 75-108 108-136 | 136-159 | 159

Below 53 11 11 0 0 0 0
53-75 9 20 17 2 0 0
75-108 1 14 61 26 2 0
108-136 1 1 20 88 14 0
136-159 0 0 3 36 43 0
159 Above 0 0 0 0 4 0

Table A.7: Confusion Matrix with Full Data for Minnesota
Predicted yield (Bushels/acreer)

Yield(Bushels/acre) | Below 61 | 61-101 101-125 | 125-161 | 161-196 | 196

Below 61 10 12 0 0 0 0
61-101 0 32 14 2 0 0
101-125 0 17 57 24 6 0
125-161 0 1 23 79 21 0
161-196 0 0 3 33 46 0
196 Above 0 0 0 0 4 0
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Table A.8: Confusion Matrix with State Data for Nebraska

Predicted yield (Bushels/acreer)
Yield(Bushels/acre) | Below 54 | 54-85 85-106 106-139 | 139-164 | 164
Below 54 0 4 2 2 0 0
54-85 0 60 25 10 1 0
85-106 0 28 83 18 5 0
106-139 0 4 38 81 26 0
139-164 0 0 0 12 50 0
164 Above 0 0 0 0 1 0

Table A.9: Confusion Matrix with Full Data for Nebraska

Predicted yield (Bushels/acreer)
Yield(Bushels/acre) | Below 61 | 61-101 101-125 | 125-161 | 161-196 | 196
Below 61 0 6 2 0 0 0
61-101 0 54 34 7 1 0
101-125 0 27 86 16 5 0
125-161 0 6 43 74 26 0
161-196 0 0 0 12 50 0
196 Above 0 0 0 0 1 0
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Figure A.1: lllinois crop reporting district map
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Minnesota

Figure A.5: Minnesota crop reporting district map
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Figure A.11: Prediction results for one layer LSTM with combination samples
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Figure A.12: Prediction results for two-layers LSTM without combination samples
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Figure A.13: Prediction results with 28 input variable
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Figure A.14: Prediction results for the “best” lowa LSTM model with percentage adjustment
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Figure A.15: Prediction results for the “best” Illinois LSTM model with constant adjustment
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Figure A.16: Prediction results for the “best” Indiana LSTM model with constant adjustment
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Figure A.17: Prediction results for the “best” Kansas LSTM model with constant adjustment
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Figure A.18: Prediction results for the “best” Michigan LSTM model with constant adjustment
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Figure A.19: Prediction results for the “best” Minnesota LSTM model with constant adjustment
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Figure A.20: Prediction results for the “best” Missouri LSTM model with constant adjustment
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Figure A.21: Prediction results for the “best” Nebraska LSTM model with constant adjustment
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Figure A.22: Prediction results for the “best” Ohio LSTM model with constant adjustment
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Figure A.23: Prediction results for the “best” South Dakota LSTM model with percentage adjustment
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